The Universe of Discourse

Tue, 12 Jul 2016

A simple but difficult arithmetic puzzle

Lately my kids have been interested in puzzles of this type: You are given a sequence of four digits, say 1,2,3,4, and your job is to combine them with ordinary arithmetic operations (+, -, ×, and ÷) in any order to make a target number, typically 24. For example, with 1,2,3,4, you can go with $$((1+2)+3)×4 = 24$$ or with $$4×((2×3)×1) = 24.$$

We were stumped trying to make 6,6,5,2 total 24, so I hacked up a solver; then we felt a little foolish when we saw the solutions, because it is not that hard. But in the course of testing the solver, I found the most challenging puzzle of this type that I've ever seen. It is:

Given 6,6,5,2, make 17.

There are no underhanded tricks. For example, you may not concatenate 2 and 5 to make 25; you may not say !!6÷6=1!! and !!5+2=7!! and concatenate 1 and 7 to make !!17!!; you may not interpret the 17 as a base 12 numeral, etc.

I hope to write a longer article about solvers in the next week or so.

[Other articles in category /math] permanent link