The Universe of Discourse
           
Sat, 21 Mar 2015

A public service announcement about contracts

Every so often, when I am called upon to sign some contract or other, I have a conversation that goes like this:

Me: I can't sign this contract; clause 14(a) gives you the right to chop off my hand.

Them: Oh, the lawyers made us put that in. Don't worry about it; of course we would never exercise that clause.

There is only one response you should make to this line of argument:

Well, my lawyer says I can't agree to that, and since you say that you would never exercise that clause, I'm sure you will have no problem removing it from the contract.

Because if the lawyers made them put in there, that is for a reason. And there is only one possible reason, which is that the lawyers do, in fact, envision that they might one day exercise that clause and chop off your hand.

The other party may proceed further with the same argument: “Look, I have been in this business twenty years, and I swear to you that we have never chopped off anyone's hand.” You must remember the one response, and repeat it:

Great! Since you say that you have never chopped off anyone's hand, then you will have no problem removing that clause from the contract.

You must repeat this over and over until it works. The other party is lazy. They just want the contract signed. They don't want to deal with their lawyers. They may sincerely believe that they would never chop off anyone's hand. They are just looking for the easiest way forward. You must make them understand that there is no easier way forward than to remove the hand-chopping clause.

They will say “The deadline is looming! If we don't get this contract executed soon it will be TOO LATE!” They are trying to blame you for the blown deadline. You should put the blame back where it belongs:

As I've made quite clear, I can't sign this contract with the hand-chopping clause. If you want to get this executed soon, you must strike out that clause before it is TOO LATE.

And if the other party would prefer to walk away from the deal rather than abandon their hand-chopping rights, what does that tell you about the value they put on the hand-chopping clause? They claim that they don't care about it and they have never exercised it, but they would prefer to give up on the whole project, rather than abandon hand-chopping? That is a situation that is well worth walking away from, and you can congratulate yourself on your clean escape.

[ Addendum: Steve Bogart asked on Twitter for examples of unacceptable contract demands; I thought of so many that I put them in a separate article. ]


[Other articles in category /law] permanent link

Examples of contracts you should not sign

Shortly after I posted A public service announcement about contracts Steve Bogart asked me on on Twitter for examples of dealbreaker clauses. Some general types I thought of immediately were:

  • Any nonspecific non-disclosure agreement with a horizon more than three years off, because after three years you are not going to remember what it was that you were not supposed to disclose.

  • Any contract in which you give up your right to sue the other party if they were to cheat you.

  • Most contracts in which you permanently relinquish your right to disparage or publicly criticize the other party.

  • Any contract that leaves you on the hook for the other party's losses if the project is unsuccessful.

  • Any contract that would require you to do something immoral or unethical.

A couple of recent specific examples:

  • Comcast is negotiating a contract with our homeowner's association to bring cable Internet to our village; the propsed agreement included a clause in which we promised not to buy Internet service from any other company for the next ten years. I refused to sign. The guy on our side who was negotiating the agreement was annoyed with me. If too many people refuse to sign, maybe Comcast will back out. “Do you think you're going to get FIOS in here in the next ten years?” he asked sarcastically. “No,” I said. “But I might move.”

    Or, you know, I might get sick of Comcast and want to go back to whatever I was using before. Or my satellite TV provider might start delivering satellite Internet. Or the municipal wireless might suddenly improve. Or Google might park a crazy Internet Balloon over my house. Or some company that doesn't exist yet might do something we can't even imagine. Google itself is barely ten years old! The iPhone is only eight!

  • In 2013 I was on a job interview at company X and was asked to sign an NDA that enjoined me from disclosing anything I learned that day for the next ten years. I explained that I could not sign such an agreement because I would not be able to honor it. I insisted on changing it to three years, which is also too long, but I am not completely unwilling to compromise. It's now two years later and I have completely forgotten what we discussed that day; I might be violating the NDA right now for all I know. Had they insisted on ten years, would I have walked out? You bet I would. You don't let your mouth write checks that your ass can't cash.


[Other articles in category /law] permanent link

Fri, 20 Mar 2015

Rectangles with equal area and perimeter

Wednesday while my 10-year-old daughter Katara was doing her math homework, she observed with pleasure that a !!6×3!! rectangle has a perimeter of 18 units and also an area of 18 square units. I mentioned that there was an infinite family of such rectangles, and, after a small amount of tinkering, that the only other such rectangle with integer sides is a !!4×4!! square, so in a sense she had found the single interesting example. She was very interested in how I knew this, and I promised to show her how to figure it out once she finished her homework. She didn't finish before bedtime, so we came back to it the following evening.

This is just one of many examples of how she has way too much homework, and how it interferes with her education.

She had already remarked that she knew how to write an equation expressing the condition she wanted, so I asked her to do that; she wrote $$(L×W) = ([L+W]×2).$$ I remember being her age and using all different shapes of parentheses too. I suggested that she should solve the equation for !!W!!, getting !!W!! on one side and a bunch of stuff involving !!L!! on the other, but she wasn't sure how to do it, so I offered suggestions while she moved the symbols around, eventually obtaining $$W = 2L\div (L-2).$$ I would have written it as a fraction, but getting the right answer is important, and using the same notation I would use is much less so, so I didn't say anything.

I asked her to plug in !!L=3!! and observe that !!W=6!! popped right out, and then similarly that !!L=6!! yields !!W=3!!, and then I asked her to try the other example she knew. Then I suggested that she see what !!L=5!! did: it gives !!W=\frac{10}3!!, This was new, so she checked it by calculating the area and the perimeter, both !!\frac{50}3!!. She was very excited by this time. As I have mentioned earlier, algebra is magical in its ability to mechanically yield answers to all sorts of questions. Even after thirty years I find it astonishing and delightful. You set up the equations, push the symbols around, and all sorts of stuff pops out like magic. Calculus is somehow much less astonishing; the machinery is all explicit. But how does algebra work? I've been thinking about this on and off for a long time and I'm still not sure.

At that point I took over because I didn't think I would be able to guide her through the next part of the problem without a demonstration; I wanted to graph the function !!W=2L\div(L-2)!! and she does not have much experience with that. She put in the five points we already knew, which already lie on a nice little curve, and then she asked an incisive question: does it level off, or does it keep going down, or what? We discussed what happens when !!L!! gets close to 2; then !!W!! shoots up to infinity. And when !!L!! gets big, say a million, you can see from the algebra that !!W!! is a hair more than 2. So I drew in the asymptotes on the hyperbola. Katara is not yet familiar with hyperbolas. (She has known about parabolas since she was tiny. I have a very fond memory of visiting Portland with her when she was almost two, and we entered Holladay park, which has fountains that squirt out of the ground. Seeing the water arching up before her, she cried delightedly “parabolas!”)


Once you know how the graph behaves, it is a simple matter to see that there are no integer solutions other than !!\langle 3,6\rangle, \langle 4,4\rangle,!! and !!\langle6,3\rangle!!. We know that !!L=5!! does not work. For !!L>6!! the value of !!W!! is always strictly between 2 and 3. For !!L=2!! there is no value of !!W!! that works at all. And for !!L<2!! the formula says that !!W!! is negative, on the other branch of the hyperbola, which is a perfectly good numerical solution (for example, !!L=-2, W=1!!) but makes no sense as the width of a rectangle. So it was a good lesson about how mathematical modeling sometimes introduces solutions that are wrong, and how you have to translate the solutions back to the original problem to see if they make sense.


[Other articles in category /math] permanent link

Thu, 19 Mar 2015

An ounce of theory is worth a pound of search

The computer is really awesome at doing quick searches for numbers with weird properties, and people with an amateur interest in recreational mathematics would do well to learn some simple programming. People appear on math.stackexchange quite often with questions about tic-tac-toe, but there are only 5,478 total positions, so any question you want to ask can be instantaneously answered by an exhaustive search. An amateur showed up last fall asking “Is it true that no prime larger than 241 can be made by either adding or subtracting 2 coprime numbers made up out of the prime factors 2,3, and 5?” and, once you dig through the jargon, the question is easily answered by the computer, which quickly finds many counterexamples, such as !!162+625=787!! and !!2^{19}+3^4=524369!!.

But sometimes the search appears too large to be practical, and then you need to apply theory. Sometimes you can deploy a lot of theory and solve the problem completely, avoiding the search. But theory is expensive, and not always available. A hybrid approach often works, which uses a tiny amount of theory to restrict the search space to the point where the search is easy.

One of these I wrote up on this blog back in 2006:

A number !!n!! is excellent if it has an even number of digits, and if when you chop it into a front half !!a!! and a back half !!b!!, you have !!b^2 - a^2 = n!!. For example, !!48!! is excellent, because !!8^2 - 4^2 = 48!!, and !!3468!! is excellent, because !!68^2 - 34^2 = 4624 - 1156 = 3468!!.

The programmer who gave me thie problem had tried a brute-force search over all numbers, but to find all 10-digit excellent numbers, this required an infeasible search of 9,000,000,000 candidates. With the application of a tiny amount of algebra, one finds that !!a(10^k+a) = b^2+b!! and it's not hard to quickly test candidates for !!a!! to see if !!a(10^k+a)!! has this form and if so to find the corresponding value of !!b!!. (Details are in the other post.) This reduces the search space for 10-digit excellent numbers from 9,000,000,000 candidates to 90,000, which could be done in under a minute even with last-century technology, and is pretty nearly instantaneous on modern equipment.

But anyway, the real point of this note is to discuss a different problem entirely. A recreational mathematician on stackexchange wanted to find distinct integers !!a,b,c,d!! for which !!a^2+b^2, b^2+c^2, c^2+d^2, !! and !!d^2+a^2!! were all perfect squares. You can search over all possible quadruples of numbers, but this takes a long time. The querent indicated later that he had tried such a search but lost patience before it yielded anything.

Instead, observe that if !!a^2+b^2!! is a perfect square then !!a!! and !!b!! are the legs of a right triangle with integer sides; they are terms in what is known as a Pythagorean triple. The prototypical example is !!3^2 + 4^2 = 5^2!!, and !!\langle 3,4,5\rangle!! is the Pythagorean triple. (The querent was quite aware that he was asking for Pythagorean triples, and mentioned them specifically.)

Here's the key point: It has been known since ancient times that if !!\langle a,b,c\rangle!! is a Pythagorean triple, then there exist integers !!m!! and !!n!! such that: $$\begin{align} \require{align} a & = n^2-m^2 \\ b & = 2mn \\ c & = n^2 + m^2 \end{align}$$

So you don't have to search for Pythagorean triples; you can just generate them with no searching:

    for my $m (1 .. 200) {
      for my $n ($m+1 .. 200) {
        my $a = $n*$n-$m*$m;
        my $b = 2 * $n * $m;
        $trip{$a}{$b} = 1;
        $trip{$b}{$a} = 1;
      }
    }

This builds a hash table, %trip, with two important properties:

  1. $trip{$a} is a sub-table whose keys are all the numbers that can form a triple with !!a!!. For example, $trip{20} is a hash with three keys: 21, 48, and 99, because !!20^2+21^2 = 29^2, 20^2+48^2= 52^2, !! and !!20^2 + 99^2 = 101^2!!, but 20 is not a participant in any other triples.

  2. $trip{$a}{$b} is true if and only if !!a^2+b^2!! is a perfect square, and false otherwise.

The table has only around 40,000 entries. Having constructed it, we now search it:

    for my $a (keys %trip) {
      for my $b (keys %{$trip{$a}}) {
        for my $c (keys %{$trip{$b}}) {
          next if $c == $a;
          for my $d (keys %{$trip{$c}}) {
            next if $d == $b;
            print "$a $b $c $d\n" if $trip{$d}{$a};
          }
        }
      }
    }

The outer loop runs over each !!a!! that is known to be a member of a Pythagorean triple. (Actually the !!m,n!! formulas show that every number bigger than 2 is a member of some triple, but we may as well skip the ones that are only in triples we didn't tabulate.) Then the next loop runs over every !!b!! that can possibly form a triple with !!a!!; that is, every !!b!! for which !!a^2+b^2!! is a perfect square. We don't have to search for them; we have them tabulated ahead of time. Then for each such !!b!! (and there aren't very many) we run over every !!c!! that forms a triple with !!b!!, and again there is no searching and very few candidates. Then then similarly !!d!!, and if the !!d!! we try forms a triple with !!a!!, we have a winner.

The next if $c == $a and next if $d == $b tests are to rule out trivial solutions like !!a=c=3, b=d=4!!, which the querent wasn't interested in anyway. We don't have to test for equality of any of ther other pairs because no number can form a Pythagorean triple with itself.

This runs in less than a second on so-so hardware and produces 11 solutions:

    3472  7296  10400 2175
    4312  23520 12008 465
    6512  9984  800   6375
    12312 666   1288  8415
    14592 6944  4350  20800
    16830 2576  1332  24624
    19968 13024 12750 1600
    25500 26048 39936 3200
    30192 6175  2400  9856
    41600 29184 13888 8700
    47040 8624  930   24016

Only five of these are really different. For example, the last one is the same as the second, with every element multiplied by 2; the third, seventh, and eighth are similarly the same. In general if !!\langle a,b,c,d\rangle!! is a solution, so is !!\langle ka, kb,kc,kd\rangle!! for any !!k!!. A slightly improved version would require that the four numbers not have any common factor greater than 1; there are few enough solutions that the cost of this test would be completely negligible.

The only other thing wrong with the program is that it produces each solution 8 times; if !!\langle a,b,c,d\rangle!! is a solution, then so are !!\langle b,c,d,a\rangle, \langle d,c,b,a\rangle,!! and so on. This is easily fixed with a little post-filtering; pipe the output through

    perl -nle '$k = join " ",  sort { $a <=> $b } split; print unless $seen{$k}++ '

or something of that sort.

The corresponding run with !!m!! and !!n!! up to 2,000 instead of only 200 takes 5 minutes and finds 445 solutions, of which 101 are distinct, including !!\langle 3614220, 618192, 2080820, 574461\rangle!!. It would take a very long time to find this with a naïve search.


[Other articles in category /math] permanent link

Mon, 01 Dec 2014

Why my book can be downloaded for free

People are frequently surprised that my book, Higher-Order Perl, is available as a free download from my web site. They ask if it spoiled my sales, or if it was hard to convince the publisher. No and no.

I sent the HOP proposal to five publishers, expecting that two or three would turn it down, and that I would pick from the remaining two or three, but somewhat to my dismay, all five offered to publish it, and I had to decide who.

One of the five publishers was Morgan Kaufmann. I had never heard of Morgan Kaufmann, but one day around 2002 I was reading the web site of Philip Greenspun. Greenspun was incredibly grouchy. He found fault with everything. But he had nothing but praise for Morgan Kaufmann. I thought that if Morgan Kaufmann had pleased Greenspun, who was nearly impossible to please, then they must be really good, so I sent them the proposal. (They eventually published the book, and did a superb job; I have never regretted choosing them.)

But not only Morgan Kaufmann but four other publishers had offered to publish the book. So I asked a number of people for advice. I happened to be in London one week and Greenspun was giving a talk there, which I went to see. After the talk I introduced myself and asked for his advice about picking the publisher.

Greenspun reiterated his support for Morgan Kaufmann, but added that the publisher was not important. Instead, he said, I should make sure to negotiate permission to make the book available for free on my web site. He told me that compared with the effort that you put into the book, the money you get back is insignificant. So if you write a book it should not be because you want to make a lot of money from it but because you have an idea that you want to present to the world. And as an author, you owe it to yourself to get your idea in front of as many people as possible. By putting the book in your web site, you make it available to many people who would not otherwise have access to it: poor people, high school students, people in developing countries, and so on.

I thought that Greenspun's idea made sense; I wanted my ideas about programming to get to as many people as possible. Also, demanding that I make the book available on my web site for free seemed like a good way to narrow down the five publishers to two or three.

The first part of that plan worked out well. The second part not so well: all five publishers agreed. Some agreed reluctantly and some agreed willingly, but they all agreed. Eventually I had the book published by Morgan Kaufmann, and after a delay that seemed long at the time but in retrospect seems not so long, I put the book on my web site. It has been downloaded many times. (It's hard to say how many, since browsers often download just the portion of the PDF file that they need to display.)

Would the book have made more money if it were not available as a free download? We can't know for sure, but I don't think so. The book has always sold well, and has made a significant amount of money for me and for Morgan Kaufmann. The amount I made is small compared to the amount of work I had to put in, just as Greenspun said, but it was nothing to sneeze at either. Even now, ten years later, it is still selling and I still get a royalty check every six months. For my book to have lasted ten years is extremely rare. Most computer books disappear without a trace after six months.

Part of this is that it's an unusually good book. But I think the longevity is partly because it is available as a free download. Imagine that person A asks a question on an Internet forum, and person B says that HOP has a section that could help with the question. If B wants to follow up, they now must find a copy of HOP. If the book is out of print, this can be difficult. It may not be in the library; it almost certainly isn't in the bookstore. Used copies may be available, but you have to order them and have them shipped, and if you don't like it once it arrives, you are stuck with it. The barrier is just too high to be convenient. But since HOP is available on my web site, A can include a link, or B can find it with an easy web search. The barrier is gone! And now I have another reader who might mention it to someone else, and they might even buy a copy. Instead of drifting away into obscurity, HOP is a book that people can recommend over and over.

So my conclusion is, Greenspun's advice was exactly correct. As an author, you owe it to yourself to make your book available to as many people as possible. And the publisher may agree, so be sure to ask.

[ Addendum: Some people are just getting the news, but the book was published in 2005, and has been available as a free download since 2008. ]


[Other articles in category /book] permanent link

Sun, 30 Nov 2014

Impostor syndrome

I don't have impostor syndrome about programming, advanced mathematics, or public speaking. I cheerfully stand up in rooms full of professional programmers and authoritatively tell them what I think they should do.

However, when I put up shelves in the bathroom back in May, I was a psychological mess. For every little thing that went wrong—and there were quite a lot—I got all stressed out and wondered why I dared to perform this task. The outcome was good, but I had a lot of stress getting there.

I put in one plexiglass shelf, for which I had bought heavy-duty wall anchors in case the kids leaned on it, and two metal shelves higher up, which came with their own screws and anchors.

Here's a partial list of things that worried me:

  1. The two upper shelves came with a paper template that I held up to the wall to mark where the holes should be drilled. What if the two shelves were slightly different and their templates were different and I needed to use both templates on the wall instead of using the same template twice?
  2. When I putting the heavy-duty wall anchors into the drywall, big divots of plaster fell out of the wall around the anchors.
  3. Then I filled in the holes with filler, and got filler in the screw holes in the wall anchors, and stressed about this. What if the filler in the sockets somehow prevented the screws from going into the anchors or caused some other unforeseeable problem?
  4. The filler looked sloppy and I worried that it would look absurdly ugly to everyone who came into the bathroom. (The shelf would have hidden the ugly screw job from a normal view, except that it was made of plexiglass, so the filled holes were visible through it.)
  5. I didn't know how big to drill the holes for the smaller wall anchors and stressed about it, examining the wall anchor packaging for some hint. There was none.
  6. I wanted to insert the wall anchors into the holes with my rubber mallet. Where the hell is it? Then I stressed about using a claw hammer instead and maybe squishing the anchors, and spent a while looking for a piece of wood or something to soften the hammer blows. Eventually I gave up looking, wondering if I was dooming the project.
  7. I guessed how big to make the hole for the anchor, and was wrong; my hole was too small. I didn't realize this until I had the first anchor halfway in. Then I stressed that I might ruin it when I pulled it back out of the wall.
  8. Then I stressed about the size of the holes again when I drilled larger holes. What if I make the hole too big, and then have to fill all the holes and re-measure and re-drill the whole thing?
  9. The anchors didn't go into two of the holes. I needed to yank them back out, then redrill the holes, with the outer end a little messy, or the anchors wouldn't go all the way into the holes. Again I worried about spoiling the anchors.
  10. When I drilled the holes, sometimes the drill suddenly went all the way into the wall and the rotating chuck left a circular scar on the paint.
  11. Also, two of the holes didn't drill easily; I had to lean on the drill really hard to get it to go through. For a while I was concerned that there was some undrillable metal thing in the wall just where I wanted my hole, and I would have to fill in all the holes and remeasure and redrill the whole thing.
  12. Even though I had marked the wall for the lower shelf by holding the shelf against the wall and then poking a pencil through the actual holes, when time came to put the bolts in place, I found that the two holes were slightly too far apart. Somehow this worked itself out.

On review, I see that several of these worries could have been completely avoided if I had had a supply of extra wall anchors.

Stuff that could have worried me but (rightly or wrongly) didn't:

  1. I knew enough to go to the store to buy wall anchors and screws for the bottom shelf, which did not come with its own hardware. There are a lot of different kinds of anchors, and I did not worry too much that I was getting the wrong thing.

  2. I was concerned (although not worried) that the screws holding the bottom shelf to the wall might stress the plastic too much and cause it to crack, either immediately or over time. Obvious solution: insert washers between the screw heads and the shelf. I went to the hardware store to get nylon washers; they didn't have any. So I got thin metal washers instead. I did not worry about this; I was sure (perhaps wrongly) that metal washers would do the job.

  3. When I asked the hardware people for plastic washers, they looked totally blank. “Plastic... washers?” they asked, as if this were a heretofore unimaginable combination. I could have felt like an idiot, but instead I felt, correctly I think, that they were idiots.

  4. For some reason, I was not even slightly worried about properly leveling the marks for the holes. I used a spirit level, which I consider pretty fancy.

  5. I was careful not to over-tighten the screws holding the plexiglass shelf in place, so as to avoid cracking them, but I was at no time afraid that I would somehow crack them anyway.

[Added in July: I have reread this article for the first time. I can report that all the worries I had about whether the shelves would look good have come to nothing; they all look just fine and I had forgotten all the things I was afraid would look bad. But I really do need to buy a couple of boxes of plastic wall anchors so I can stop worrying about spoiling the four I have.]

[The shelves look crooked in the picture, but that is because I am holding the camera crooked; in real life they look great.]

[ A later visit to a better hardware store confirmed that plastic washers do exist, and I did not hallucinate them. The rubber mallet still has not come to light.]


[Other articles in category /brain] permanent link

Sat, 22 Nov 2014

Within this instrument, resides the Universe

When opportunity permits, I have been trying to teach my ten-year-old daughter Katara rudiments of algebra and group theory. Last night I posed this problem:

Mary and Sue are sisters. Today, Mary is three times as old as Sue; in two years, she will be twice as old as Sue. How old are they now?

I have tried to teach Katara that these problems have several phases. In the first phase you translate the problem into algebra, and then in the second phase you manipulate the symbols, almost mechanically, until the answer pops out as if by magic.

There is a third phase, which is pedagogically and practically essential. This is to check that the solution is correct by translating the results back to the context of the original problem. It's surprising how often teachers neglect this step; it is as if a magician who had made a rabbit vanish from behind a screen then forgot to take away the screen to show the audience that the rabbit had vanished.

Katara set up the equations, not as I would have done, but using four unknowns, to represent the two ages today and the two ages in the future:

$$\begin{align} MT & = 3ST \\ MY & = 2SY \\ \end{align} $$

(!!MT!! here is the name of a single variable, not a product of !!M!! and !!T!!; the others should be understood similarly.)

“Good so far,” I said, “but you have four unknowns and only two equations. You need to find two more relationships between the unknowns.” She thought a bit and then wrote down the other two relations:

$$\begin{align} MY & = MT + 2 \\ SY & = ST + 2 \end{align} $$

I would have written two equations in two unknowns:

$$\begin{align} M_T & = 3S_T\\ M_T+2 & = 2(S_T + 2) \end{align} $$

but one of the best things about mathematics is that there are many ways to solve each problem, and no method is privileged above any other except perhaps for reasons of practicality. Katara's translation is different from what I would have done, and it requires more work in phase 2, but it is correct, and I am not going to tell her to do it my way. The method works both ways; this is one of its best features. If the problem can be solved by thinking of it as a problem in two unknowns, then it can also be solved by thinking of it as a problem in four or in eleven unknowns. You need to find more relationships, but they must exist and they can be found.

Katara may eventually want to learn a technically easier way to do it, but to teach that right now would be what programmers call a premature optimization. If her formulation of the problem requires more symbol manipulation than what I would have done, that is all right; she needs practice manipulating the symbols anyway.

She went ahead with the manipulations, reducing the system of four equations to three, then two and then one, solving the one equation to find the value of the single remaining unknown, and then substituting that value back to find the other unknowns. One nice thing about these simple problems is that when the solution is correct you can see it at a glance: Mary is six years old and Sue is two, and in two years they will be eight and four. Katara loves picking values for the unknowns ahead of time, writing down a random set of relations among those values, and then working the method and seeing the correct answer pop out. I remember being endlessly delighted by almost the same thing when I was a little older than her. In The Dying Earth Jack Vance writes of a wizard who travels to an alternate universe to learn from the master “the secret of renewed youth, many spells of the ancients, and a strange abstract lore that Pandelume termed ‘Mathematics.’”

“I find herein a wonderful beauty,” he told Pandelume. “This is no science, this is art, where equations fall away to elements like resolving chords, and where always prevails a symmetry either explicit or multiplex, but always of a crystalline serenity.”

After Katara had solved this problem, I asked if she was game for something a little weird, and she said she was, so I asked her:

Mary and Sue are sisters. Today, Mary is three times as old as Sue; in two years, they will be the same age. How old are they now?

“WHAAAAAT?” she said. She has a good number sense, and immediately saw that this was a strange set of conditions. (If they aren't the same age now, how can they be the same age in two years?) She asked me what would happen. I said (truthfully) that I wasn't sure, and suggested she work through it to find out. So she set up the equations as before and worked out the solution, which is obvious once you see it: Both girls are zero years old today, and zero is three times as old as zero. Katara was thrilled and delighted, and shared her discovery with her mother and her aunt.

There are some powerful lessons here. One is that the method works even when the conditions seem to make no sense; often the results pop out just the same, and can sometimes make sense of problems that seem ill-posed or impossible. Once you have set up the equations, you can just push the symbols around and the answer will emerge, like a familiar building approached through a fog.

But another lesson, only hinted at so far, is that mathematics has its own way of understanding things, and this is not always the way that humans understand them. Goethe famously said that whatever you say to mathematicians, they immediately translate it into their own language and then it is something different; I think this is exactly what he meant.

In this case it is not too much of a stretch to agree that Mary is three times as old as Sue when they are both zero years old. But in the future I plan to give Katara a problem that requires Mary and Sue to have negative ages—say that Mary is twice as old as Sue today, but in three years Sue will be twice as old—to demonstrate that the answer that pops out may not be a reasonable one, or that the original translation into mathematics can lose essential features of the original problem. The solution that says that !!M_T=-2, S_T=-1 !! is mathematically irreproachable, and if the original problem had been posed as “Find two numbers such that…” it would be perfectly correct. But translated back to the original context of a problem that asks about the ages of two sisters, the solution is unacceptable. This is the point of the joke about the spherical cow.


[Other articles in category /math] permanent link

Wed, 23 Jul 2014

When do n and 2n have the same digits?

[This article was published last month on the math.stackexchange blog, which seems to have died young, despite many earnest-sounding promises beforehand from people who claimed they would contribute material. I am repatriating it here.]

A recent question on math.stackexchange asks for the smallest positive integer !!A!! for which the number !!2A!! has the same decimal digits in some other order.

Math geeks may immediately realize that !!142857!! has this property, because it is the first 6 digits of the decimal expansion of !!\frac 17!!, and the cyclic behavior of the decimal expansion of !!\frac n7!! is well-known. But is this the minimal solution? It is not. Brute-force enumeration of the solutions quickly reveals that there are 12 solutions of 6 digits each, all permutations of !!142857!!, and that larger solutions, such as 1025874 and 1257489 seem to follow a similar pattern. What is happening here?

Stuck in Dallas-Fort Worth airport one weekend, I did some work on the problem, and although I wasn't able to solve it completely, I made significant progress. I found a method that allows one to hand-calculate that there is no solution with fewer than six digits, and to enumerate all the solutions with 6 digits, including the minimal one. I found an explanation for the surprising behavior that solutions tend to be permutations of one another. The short form of the explanation is that there are fairly strict conditions on which sets of digits can appear in a solution of the problem. But once the set of digits is chosen, the conditions on that order of the digits in the solution are fairly lax.

So one typically sees, not only in base 10 but in other bases, that the solutions to this problem fall into a few classes that are all permutations of one another; this is exactly what happens in base 10 where all the 6-digit solutions are permutations of !!124578!!. As the number of digits is allowed to increase, the strict first set of conditions relaxes a little, and other digit groups appear as solutions.

Notation

The property of interest, !!P_R(A)!!, is that the numbers !!A!! and !!B=2A!! have exactly the same base-!!R!! digits. We would like to find numbers !!A!! having property !!P_R!! for various !!R!!, and we are most interested in !!R=10!!. Suppose !!A!! is an !!n!!-digit numeral having property !!P_R!!; let the (base-!!R!!) digits of !!A!! be !!a_{n-1}\ldots a_1a_0!! and similarly the digits of !!B = 2A!! are !!b_{n-1}\ldots b_1b_0!!. The reader is encouraged to keep in mind the simple example of !!R=8, n=4, A=\mathtt{1042}, B=\mathtt{2104}!! which we will bring up from time to time.

Since the digits of !!B!! and !!A!! are the same, in a different order, we may say that !!b_i = a_{P(i)}!! for some permutation !!P!!. In general !!P!! might have more than one cycle, but we will suppose that !!P!! is a single cycle. All the following discussion of !!P!! will apply to the individual cycles of !!P!! in the case that !!P!! is a product of two or more cycles. For our example of !!a=\mathtt{1042}, b=\mathtt{2104}!!, we have !!P = (0\,1\,2\,3)!! in cycle notation. We won't need to worry about the details of !!P!!, except to note that !!i, P(i), P(P(i)), \ldots, P^{n-1}(i)!! completely exhaust the indices !!0. \ldots n-1!!, and that !!P^n(i) = i!! because !!P!! is an !!n!!-cycle.

Conditions on the set of digits in a solution

For each !!i!! we have $$a_{P(i)} = b_{i} \equiv 2a_{i} + c_i\pmod R $$ where the ‘carry bit’ !!c_i!! is either 0 or 1 and depends on whether there was a carry when doubling !!a_{i-1}!!. (When !!i=0!! we are in the rightmost position and there is never a carry, so !!c_0= 0!!.) We can then write:

$$\begin{align} a_{P(P(i))} &= 2a_{P(i)} + c_{P(i)} \\ &= 2(2a_{i} + c_i) + c_{P(i)} &&= 4a_i + 2c_i + c_{P(i)}\\ a_{P(P(P(i)))} &= 2(4a_i + 2c_i + c_{P(P(i)})) + c_{P(i)} &&= 8a_i + 4c_i + 2c_{P(i)} + c_{P(P(i))}\\ &&&\vdots\\ a_{P^n(i)} &&&= 2^na_i + v \end{align} $$

all equations taken !!\bmod R!!. But since !!P!! is an !!n!!-cycle, !!P^n(i) = i!!, so we have $$a_i \equiv 2^na_i + v\pmod R$$ or equivalently $$\big(2^n-1\big)a_i + v \equiv 0\pmod R\tag{$\star$}$$ where !!v\in{0,\ldots 2^n-1}!! depends only on the values of the carry bits !!c_i!!—the !!c_i!! are precisely the binary digits of !!v!!.

Specifying a particular value of !!a_0!! and !!v!! that satisfy this equation completely determines all the !!a_i!!. For example, !!a_0 = 2, v = \color{darkblue}{0010}_2 = 2!! is a solution when !!R=8, n=4!! because !!\bigl(2^4-1\bigr)\cdot2 + 2\equiv 0\pmod 8!!, and this solution allows us to compute

$$\def\db#1{\color{darkblue}{#1}}\begin{align} a_0&&&=2\\ a_{P(0)} &= 2a_0 &+ \db0 &= 4\\ a_{P^2(0)} &= 2a_{P(0)} &+ \db0 &= 0 \\ a_{P^3(0)} &= 2a_{P^2(0)} &+ \db1 &= 1\\ \hline a_{P^4(0)} &= 2a_{P^3(0)} &+ \db0 &= 2\\ \end{align}$$

where the carry bits !!c_i = \langle 0,0,1,0\rangle!! are visible in the third column, and all the sums are taken !!\pmod 8!!. Note that !!a_{P^n(0)} = a_0!! as promised. This derivation of the entire set of !!a_i!! from a single one plus a choice of !!v!! is crucial, so let's see one more example. Let's consider !!R=10, n=3!!. Then we want to choose !!a_0!! and !!v!! so that !!\left(2^3-1\right)a_0 + v \equiv 0\pmod{10}!! where !!v\in{0\ldots 7}!!. One possible solution is !!a_0 = 5, v=\color{darkblue}{101}_2 = 5!!. Then we can derive the other !!a_i!! as follows:

$$\begin{align} a_0&&&=5\\ a_{P(0)} &= 2a_0 &+ \db1 &= 1\\ a_{P^2(0)} &= 2a_{P(0)} &+ \db0 &= 2 \\\hline a_{P^3(0)} &= 2a_{P^2(0)} &+ \db1 &= 5\\ \end{align}$$

And again we have !!a_{P^n(0)}= a_0!! as required.

Since the bits of !!v!! are used cyclically, not every pair of !!\langle a_0, v\rangle!! will yield a different solution. Rotating the bits of !!v!! and pairing them with different choices of !!a_0!! will yield the same cycle of digits starting from a different place. In the first example above, we had !!a_0 = 2, v = 0010_2 = 2!!. If we were to take !!a_0 = 4, v = 0100_2 = 4!! (which also solves !!(\star)!!) we would get the same cycle of values of the !!a_i!! but starting from !!4!! instead of from !!2!!, and similarly if we take !!a_0=0, v = 1000_2 = 8!! or !!a_0 = 1, v = 0001_2!!. So we can narrow down the solution set of !!(\star)!! by considering only the so-called bracelets of !!v!! rather than all !!2^n!! possible values. Two values of !!v!! are considered equivalent as bracelets if one is a rotation of the other. When a set of !!v!!-values are equivalent as bracelets, we need only consider one of them; the others will give the same cyclic sequence of digits, but starting in a different place. For !!n=4!!, for example, the bracelets are !!0000, 0001, 0011, 0101, 0111, !! and !!1111!!; the sequences !!0110, 1100,!! and !!1001!! being equivalent to !!0011!!, and so on.

Example

Let us take !!R=9, n=3!!, so we want to find 3-digit numerals with property !!P_9!!. According to !!(\star)!! we need !!7a_i + v \equiv 0\pmod{9}!! where !!v\in{0\ldots 7}!!. There are 9 possible values for !!a_i!!; for each one there is at most one possible value of !!v!! that makes the sum zero:

$$\pi \approx 3 $$

$$\begin{array}{rrr} a_i & 7a_i & v \\ \hline 0 & 0 & 0 \\ 1 & 7 & 2 \\ 2 & 14 & 4 \\ 3 & 21 & 6 \\ 4 & 28 & \\ 5 & 35 & 1 \\ 6 & 42 & 3 \\ 7 & 49 & 5 \\ 8 & 56 & 7 \\ \end{array} $$

(For !!a_i=4!! there is no solution.) We may disregard the non-bracelet values of !!v!!, as these will give us solutions that are the same as those given by bracelet values of !!v!!. The bracelets are:

$$\begin{array}{rl} 000 & 0 \\ 001 & 1 \\ 011 & 3 \\ 111 & 7 \end{array}$$

so we may disregard the solutions exacpt when !!v=0,1,3,7!!. Calculating the digit sequences from these four values of !!v!! and the corresponding !!a_i!! we find:

$$\begin{array}{ccl} a_0 & v & \text{digits} \\ \hline 0 & 0 & 000 \\ 5 & 1 & 512 \\ 6 & 3 & 637 \\ 8 & 7 & 888 \ \end{array} $$

(In the second line, for example, we have !!v=1 = 001_2!!, so !!1 = 2\cdot 5 + 0; 2 = 1\cdot 2 + 0;!! and !!5 = 2\cdot 2 + 1!!.)

Any number !!A!! of three digits, for which !!2A!! contains exactly the same three digits, in base 9, must therefore consist of exactly the digits !!000, 125, 367,!! or !!888!!.

A warning

All the foregoing assumes that the permutation !!P!! is a single cycle. In general, it may not be. Suppose we did an analysis like that above for !!R=10, n=5!! and found that there was no possible digit set, other than the trivial set 00000, that satisfied the governing equation !!(2^5-1)a_0 + v\equiv 0\pmod{10}!!. This would not completely rule out a base-10 solution with 5 digits, because the analysis only rules out a cyclic set of digits. There could still be a solution where !!P!! was a product of a !!2!! and a !!3!!-cycle, or a product of still smaller cycles.

Something like this occurs, for example, in the !!n=4, R=8!! case. Solving the governing equation !!(2^5-1)a_0 + v \equiv 0\pmod 8!! yields only four possible digit cycles, namely !!{0,1,2,4}, {1,3,6,4}, {2,5,2,5}!!, and !!{3,7,6,5}!!. But there are several additional solutions: !!2500_8\cdot 2 = 5200_8, 2750_8\cdot 2 = 5720_8, !! and !!2775_8\cdot 2 = 5772_8!!. These correspond to permutations !!P!! with more than one cycle. In the case of !!5720_8!!, for example, !!P!! exchanges the !!5!! and the !!2!!, and leaves the !!0!! and the !!7!! fixed.

For this reason we cannot rule out the possibility of an !!n!!-digit solution without first considering all smaller !!n!!.

The Large Equals Odd rule

When !!R!! is even there is a simple condition we can use to rule out certain sets of digits from being single-cycle solutions. Recall that !!A=a_{n-1}\ldots a_0!! and !!B=b_{n-1}\ldots b_0!!. Let us agree that a digit !!d!! is large if !!d\ge \frac R2!! and small otherwise. That is, !!d!! is large if, upon doubling, it causes a carry into the next column to the left.

Since !!b_i =(2a_i + c_i)\bmod R!!, where the !!c_i!! are carry bits, we see that, except for !!b_0!!, the digit !!b_i!! is odd precisely when there is a carry from the next column to the right, which occurs precisely when !!a_{i-1}!! is large. Thus the number of odd digits among !!b_1,\ldots b_{n-1}!! is equal to the number of large digits among !!a_1,\ldots a_{n-2}!!. This leaves the digits !!b_0!! and !!a_{n-1}!! uncounted. But !!b_0!! is never odd, since there is never a carry in the rightmost position, and !!a_{n-1}!! is always small (since otherwise !!B!! would have !!n+1!! digits, which is not allowed). So the number of large digits in !!A!! is exactly equal to the number of odd digits in !!B!!. And since !!A!! and !!B!! have exactly the same digits, the number of large digits in !!A!! is equal to the number of odd digits in !!A!!. Observe that this is the case for our running example !!1042_8!!: there is one odd digit and one large digit (the 4).

When !!R!! is odd the analogous condition is somewhat more complicated, but since the main case of interest is !!R=10!!, we have the useful rule that:

For !!R!! even, the number of odd digits in any solution !!A!! is equal to the number of large digits in !!A!!.

Conditions on the order of digits in a solution

We have determined, using the above method, that the digits !!{5,1,2}!! might form a base-9 numeral with property !!P_9!!. Now we would like to arrange them into a base-9 numeral that actually does have that property. Again let us write !!A = a_2a_1a_0!! and !!B=b_2b_1b_0!!, with !!B=2A!!. Note that if !!a_i = 1!!, then !!b_i = 3!! (if there was a carry from the next column to the right) or !!2!! (if there was no carry), but since !!b_i=3!! is impossible, we must have !!a_i = 2!! and therefore !!a_{i-1}!! must be small, since there is no carry into position !!i!!. But since !!a_{i-1}!! is also one of !!{5,1,2}!!, and it cannot also be !!1!!, it must be !!2!!. This shows that the 1, unless it appears in the rightmost position, must be to the left of the !!2!!; it cannot be to the left of the !!5!!. Similarly, if !!a_i = 2!! then !!b_i = 5!!, because !!4!! is impossible, so the !!2!! must be to the left of a large digit, which must be the !!5!!. Similar reasoning produces no constraint on the position of the !!5!!; it could be to the left of a small digit (in which case it doubles to !!1!!) or a large digit (in which case it doubles to !!2!!). We can summarize these findings as follows:

$$\begin{array}{cl} \text{digit} & \text{to the left of} \\ \hline 1 & 1, 2, \text{end} \\ 2 & 5 \\ 5 & 1,2,5,\text{end} \end{array}$$

Here “end” means that the indicated digit could be the rightmost.

Furthermore, the left digit of !!A!! must be small (or else there would be a carry in the leftmost place and !!2A!! would have 4 digits instead of 3) so it must be either 1 or 2. It is not hard to see from this table that the digits must be in the order !!125!! or !!251!!, and indeed, both of those numbers have the required property: !!125_9\cdot 2 = 251_9!!, and !!251_9\cdot 2 = 512_9!!.

This was a simple example, but in more complicated cases it is helpful to draw the order constraints as a graph. Suppose we draw a graph with one vertex for each digit, and one additional vertex to represent the end of the numeral. The graph has an edge from vertex !!v!! to !!v'!! whenever !!v!! can appear to the left of !!v'!!. Then the graph drawn for the table above looks like this:

Graph for 125 base 9

A 3-digit numeral with property !!P_9!! corresponds to a path in this graph that starts at one of the nonzero small digits (marked in blue), ends at the red node marked ‘end’, and visits each node exactly once. Such a path is called hamiltonian. Obviously, self-loops never occur in a hamiltonian path, so we will omit them from future diagrams.

Now we will consider the digit set !!637!!, again base 9. An analysis similar to the foregoing allows us to construct the following graph:

Graph for 367 base 9

Here it is immediately clear that the only hamiltonian path is !!3-7-6-\text{end}!!, and indeed, !!376_9\cdot 2 = 763_9!!.

In general there might be multiple instances of a digit, and so multiple nodes labeled with that digit. Analysis of the !!0,0,0!! case produces a graph with no legal start nodes and so no solutions, unless leading zeroes are allowed, in which case !!000!! is a perfectly valid solution. Analysis of the !!8,8,8!! case produces a graph with no path to the end node and so no solutions. These two trivial patterns appear for all !!R!! and all !!n!!, and we will ignore them from now on.

Returning to our ongoing example, !!1042!! in base 8, we see that !!1!! and !!2!! must double to !!2!! and !!4!!, so must be to the left of small digits, but !!4!! and !!0!! can double to either !!0!! or !!1!! and so could be to the left of anything. Here the constraints are so lax that the graph doesn't help us narrow them down much:

Graph for 1024 base 8

Observing that the only arrow into the 4 is from 0, so that the 4 must follow the 0, and that the entire number must begin with 1 or 2, we can enumerate the solutions:

      1042
      1204
      2041
      2104

If leading zeroes are allowed we have also:

      0412
      0421

All of these are solutions in base 8.

The case of !!R=10!!

Now we turn to our main problem, solutions in base 10.

To find all the solutions of length 6 requires an enumeration of smaller solutions, which, if they existed, might be concatenated into a solution of length 6. This is because our analysis of the digit sets that can appear in a solution assumes that the digits are permuted cyclically; that is, the permutations !!P!! that we considered had only one cycle each.

There are no smaller solutions, but to prove that the length 6 solutions are minimal, we must analyze the cases for smaller !!n!! and rule them out. We now produce a complete analysis of the base 10 case with !!R=10!! and !!n\le 6!!. For !!n=1!! there is only the trivial solution of !!0!!, which we disregard. (The question asked for a positive number anyway.)

!!n=2!!

For !!n=2!!, we want to find solutions of !!3a_i + v \equiv 0\pmod{10}!! where !!v!! is a two-bit bracelet number, one of !!00_2, 01_2, !! or !!11_2!!. Tabulating the values of !!a_i!! and !!v\in{0,1,3}!! that solve this equation we get:

$$\begin{array}{ccc} v& a_i \\ \hline 0 & 0 \\ 1& 3 \\ 3& 9 \\ \end{array}$$

We can disregard the !!v=0!! and !!v=3!! solutions because the former yields the trivial solution !!00!! and the latter yields the nonsolution !!99!!. So the only possibility we need to investigate further is !!a_i = 3, v = 1!!, which corresponds to the digit sequence !!36!!: Doubling !!3!! gives us !!6!! and doubling !!6!!, plus a carry, gives us !!3!! again.

But when we tabulate of which digits must be left of which informs us that there is no solution with just !!3!! and !!6!!, because the graph we get, once self-loops are eliminated, looks like this:

graph for 36 base 10

which obviously has no hamiltonian path. Thus there is no solution for !!R=10, n=2!!.

!!n=3!!

For !!n=3!! we need to solve the equation !!7a_i + v \equiv 0\pmod{10}!! where !!v!! is a bracelet number in !!{0,\ldots 7}!!, specifically one of !!0,1,3,!! or !!7!!. Since !!7!! and !!10!! are relatively prime, for each !!v!! there is a single !!a_i!! that solves the equation. Tabulating the possible values of !!a_i!! as before, and this time omitting rows with no solution, we have:

$$\begin{array}{rrl} v & a_i & \text{digits}\\ \hline 0& 0 & 000\\ 1& 7 & 748 \\ 3& 1 & 125\\ 7&9 & 999\\ \end{array}$$

The digit sequences !!0,0,0!! and !!9,9,9!! yield trivial solutions or nonsolutions as usual, and we will omit them in the future. The other two lines suggest the digit sets !!1,2,5!! and !!4,7,8!!, both of which fails the “odd equals large” rule.

This analysis rules out the possibility of a digit set with !!a_0 \to a_1 \to a_2 \to a_1!!, but it does not completely rule out a 3-digit solution, since one could be obtained by concatenating a one-digit and a two-digit solution, or three one-digit solutions. However, we know by now that no one- or two-digit solutions exist. Therefore there are no 3-digit solutions in base 10.

!!n=4!!

For !!n=4!! the governing equation is !!15a_i + v \equiv 0\pmod{10}!! where !!v!! is a 4-bit bracelet number, one of !!{0,1,3,5,7,15}!!. This is a little more complicated because !!\gcd(15,10)\ne 1!!. Tabulating the possible digit sets, we get:

$$\begin{array}{crrl} a_i & 15a_i& v & \text{digits}\\ \hline 0 & 0 & 0 & 0000\\ 1 & 5 & 5 & 1250\\ 1 & 5 & 15 & 1375\\ 2 & 0 & 0 & 2486\\ 3 & 5 & 5 & 3749\\ 3 & 5 & 15 & 3751\\ 4 & 0 & 0 & 4862\\ 5 & 5 & 5 & 5012\\ 5 & 5 & 5 & 5137\\ 6 & 0 & 0 & 6248\\ 7 & 5 & 5 & 7493\\ 7 & 5 & 5 & 7513\\ 8 & 0 & 0 & 8624 \\ 9 & 5 & 5 & 9874\\ 9 & 5 & 15 & 9999 \\ \end{array}$$

where the second column has been reduced mod !!10!!. Note that even restricting !!v!! to bracelet numbers the table still contains duplicate digit sequences; the 15 entries on the right contain only the six basic sequences !!0000, 0125, 1375, 2486, 3749, 4987!!, and !!9999!!. Of these, only !!0000, 9999,!! and !!3749!! obey the odd equals large criterion, and we will disregard !!0000!! and !!9999!! as usual, leaving only !!3749!!. We construct the corresponding graph for this digit set as follows: !!3!! must double to !!7!!, not !!6!!, so must be left of a large number !!7!! or !!9!!. Similarly !!4!! must be left of !!7!! or !!9!!. !!9!! must also double to !!9!!, so must be left of !!7!!. Finally, !!7!! must double to !!4!!, so must be left of !!3,4!! or the end of the numeral. The corresponding graph is:

graph for 3749 base 10

which evidently has no hamiltonian path: whichever of 3 or 4 we start at, we cannot visit the other without passing through 7, and then we cannot reach the end node without passing through 7 a second time. So there is no solution with !!R=10!! and !!n=4!!.

!!n=5!!

We leave this case as an exercise. There are 8 solutions to the governing equation, all of which are ruled out by the odd equals large rule.

!!n=6!!

For !!n=6!! the possible solutions are given by the governing equation !!63a_i + v \equiv 0\pmod{10}!! where !!v!! is a 6-bit bracelet number, one of !!{0,1,3,5,7,9,11,13,15,21,23,27,31,63}!!. Tabulating the possible digit sets, we get:

$$\begin{array}{crrl} v & a_i & \text{digits}\\ \hline 0 & 0 & 000000\\ 1 & 3 & 362486 \\ 3 & 9 & 986249 \\ 5 & 5 & 500012 \\ 7 & 1 & 124875 \\ 9 & 7 & 748748 \\ 11 & 3 & 362501 \\ 13 & 9 & 986374 \\ 15 & 5 & 500137 \\ 21 & 3 & 363636 \\ 23 & 9 & 989899 \\ 27 & 1 & 125125 \\ 31 & 3 & 363751 \\ 63 & 9 & 999999 \\ \end{array}$$

After ignoring !!000000!! and !!999999!! as usual, the large equals odd rule allows us to ignore all the other sequences except !!124875!! and !!363636!!. The latter fails for the same reason that !!36!! did when !!n=2!!. But !!142857!! , the lone survivor, gives us a complicated derived graph containing many hamiltonian paths, every one of which is a solution to the problem:

graph for 124578 base 10

It is not hard to pick out from this graph the minimal solution !!125874!!, for which !!125874\cdot 2 = 251748!!, and also our old friend !!142857!! for which !!142857\cdot 2 = 285714!!.

We see here the reason why all the small numbers with property !!P_{10}!! contain the digits !!124578!!. The constraints on which digits can appear in a solution are quite strict, and rule out all other sequences of six digits and all shorter sequences. But once a set of digits passes these stringent conditions, the constraints on it are much looser, because !!B!! is only required to have the digits of !!A!! in some order, and there are many possible orders, many of which will satisfy the rather loose conditions involving the distribution of the carry bits. This graph is typical: it has a set of small nodes and a set of large nodes, and each node is connected to either all the small nodes or all the large nodes, so that the graph has many edges, and, as in this case, a largish clique of small nodes and a largish clique of large nodes, and as a result many hamiltonian paths.

Onward

This analysis is tedious but is simple enough to perform by hand in under an hour. As !!n!! increases further, enumerating the solutions of the governing equation becomes very time-consuming. I wrote a simple computer program to perform the analysis for given !!R!! and !!n!!, and to emit the possible digit sets that satisfied the large equals odd criterion. I had wondered if every base-10 solution contained equal numbers of the digits !!1,2,4,8,5,!! and !!7!!. This is the case for !!n=7!! (where the only admissible digit set is !!\{1,2,4,5,7,8\}\cup\{9\}!!), for !!n=8!! (where the only admissible sets are !!\{1,2,4,5,7,8\}\cup \{3,6\}!! and !!\{1,2,4,5,7,8\}\cup\{9,9\}!!), and for !!n=9!! (where the only admissible sets are !!\{1,2,4,5,7,8\}\cup\{3,6,9\}!! and !!\{1,2,4,5,7,8\}\cup\{9,9,9\}!!). But when we reach !!n=10!! the increasing number of bracelets has loosened up the requirements a little and there are 5 admissible digit sets. I picked two of the promising-seeming ones and quickly found by hand the solutions !!4225561128!! and !!1577438874!!, both of which wreck any theory that the digits !!1,2,4,5,8,7!! must all appear the same number of times.

Acknowledgments

Thanks to Karl Kronenfeld for corrections and many helpful suggestions.


[Other articles in category /math] permanent link

Sun, 20 Jul 2014

Similarity analysis of quilt blocks

As I've discussed elsewhere, I once wrote a program to enumerate all the possible quilt blocks of a certain type. The quilt blocks in question are, in quilt jargon, sixteen-patch half-square triangles. A half-square triangle, also called a “patch”, is two triangles of fabric sewn together, like this: half-square triangle

Then you sew four of these patches into a four-patch, say like this:

four-patch

Then to make a sixteen-patch block of the type I was considering, you take four identical four-patch blocks, and sew them together with rotational symmetry, like this:

16-patch

It turns out that there are exactly 72 different ways to do this. (Blocks equivalent under a reflection are considered the same, as are blocks obtained by exchanging the roles of black and white, which are merely stand-ins for arbitrary colors to be chosen later.) Here is the complete set of 72:

block A1 block A2 block A3 block A4 block B1 block B2 block B3 block B4 block C1 block C2 block C3 block C4 block D1 block D2 block D3 block D4 block E1 block E2 block E3 block E4 block F1 block F2 block F3 block F4 block G1 block G2 block G3 block G4 block H1 block H2 block H3 block H4 block I1 block I2 block I3 block I4 block J1 block J2 block J3 block J4 block K1 block K2 block K3 block K4 block L1 block L2 block L3 block L4 block M1 block M2 block M3 block M4 block N1 block N2 block N3 block N4 block O1 block O2 block O3 block O4 block P1 block P2 block P3 block P4 block Q1 block Q2 block Q3 block Q4 block R1 block R2 block R3 block R4

It's immediately clear that some of these resemble one another, sometimes so strongly that it can be hard to tell how they differ, while others are very distinctive and unique-seeming. I wanted to make the computer classify the blocks on the basis of similarity.

My idea was to try to find a way to get the computer to notice which blocks have distinctive components of one color. For example, many blocks have a distinctive diamond shape small diamond shape in the center.

Some have a pinwheel like this:

pinwheel 1

which also has the diamond in the middle, while others have a different kind of pinwheel with no diamond:

pinwheel 2

I wanted to enumerate such components and ask the computer to list which blocks contained which shapes; then group them by similarity, the idea being that that blocks with the same distinctive components are similar.

The program suite uses a compact notation of blocks and of shapes that makes it easy to figure out which blocks contain which distinctive components.

Since each block is made of four identical four-patches, it's enough just to examine the four-patches. Each of the half-square triangle patches can be oriented in two ways:

patch 1   patch 2

Here are two of the 12 ways to orient the patches in a four-patch:

acddgghj four-patch  bbeeffii four-patch

Each 16-patch is made of four four-patches, and you must imagine that the four-patches shown above are in the upper-left position in the 16-patch. Then symmetry of the 16-patch block means that triangles with the same label are in positions that are symmetric with respect to the entire block. For example, the two triangles labeled b are on opposite sides of the block's northwest-southeast diagonal. But there is no symmetry of the full 16-patch block that carries triangle d to triangle g, because d is on the edge of the block, while g is in the interior.

Triangles must be colored opposite colors if they are part of the same patch, but other than that there are no constraints on the coloring.

A block might, of course, have patches in both orientations:

labeled block 3

All the blocks with diagonals oriented this way are assigned descriptors made from the letters bbdefgii.

Once you have chosen one of the 12 ways to orient the diagonals in the four-patch, you still have to color the patches. A descriptor like bbeeffii describes the orientation of the diagonal lines in the squares, but it does not describe the way the four patches are colored; there are between 4 and 8 ways to color each sort of four-patch. For example, the bbeeffii four-patch shown earlier can be colored in six different ways:

bbeeffii four-patch bbeeffii patch 4   bbeeffii patch 1   bbeeffii patch 2   bbeeffii patch 3   bbeeffii patch 5   bbeeffii patch 6

In each case, all four diagonals run from northwest to southeast. (All other ways of coloring this four-patch are equivalent to one of these under one or more of rotation, reflection, and exchange of black and white.)

We can describe a patch by listing the descriptors of the eight triangles, grouped by which triangles form connected regions. For example, the first block above is:

bbeeffii four-patch bbeeffii patch 4   b/bf/ee/fi/i

because there's an isolated white b triangle, then a black parallelogram made of a b and an f patch, then a white triangle made from the two white e triangles, then another parallelogram made from the black f and i, and finally in the middle, the white i. (The two white e triangles appear to be separated, but when four of these four-patches are joined into a 16-patch block, the two white e patches will be adjacent and will form a single large triangle: b/bf/ee/fi/i 16-patch)

The other five bbeeffii four-patches are, in the same order they are shown above:

    b/b/e/e/f/f/i/i
    b/b/e/e/fi/fi
    b/bfi/ee/f/i
    bfi/bfi/e/e
    bf/bf/e/e/i/i

All six have bbeeffii, but grouped differently depending on the colorings. The second one (b/b/e/e/f/f/i/i four-patch b/b/e/e/f/f/i/i) has no regions with more than one triangle; the fifth (bfi/bfi/e/e four-patch bfi/bfi/e/e) has two large regions of three triangles each, and two isolated triangles. In the latter four-patch, the bfi in the descriptor has three letters because the patch has a corresponding distinctive component made of three triangles.

I made up a list of the descriptors for all 72 blocks; I think I did this by hand. (The work directory contains a blocks file that maps blocks to their descriptors, but the Makefile does not say how to build it, suggesting that it was not automatically built.) From this list one can automatically extract a list of descriptors of interesting shapes: an interesting shape is two or more letters that appear together in some descriptor. (Or it can be the single letter j, which is exceptional; see below.) For example, bffh represents a distinctive component. It can only occur in a patch that has a b, two fs, and an h, like this one:

labeled block 4

and it will only be significant if the b, the two fs, and the h are the same color:

bffh patch

in which case you get this distinctive and interesting-looking hook component.

There is only one block that includes this distinctive hook component; it has descriptor b/bffh/ee/j, and looks like this: block b/bffh/ee/j. But some of the distinctive components are more common. The ee component represents the large white half-diamonds on the four sides. A block with "ee" in its descriptor always looks like this:

ee patch

and the blocks formed from such patches always have a distinctive half-diamond component on each edge, like this:

ee block

(The stippled areas vary from block to block, but the blocks with ee in their descriptors always have the half-diamonds as shown.)

The blocks listed at http://hop.perl.plover.com/quilt/analysis/images/ee.html all have the ee component. There are many differences between them, but they all have the half-diamonds in common.

Other distinctive components have similar short descriptors. The two pinwheels I mentioned above are pinwheel 1 gh and pinwheel 2 fi, respectively; if you look at the list of gh blocks and the list of fi blocks you'll see all the blocks with each kind of pinwheel.

Descriptor j is an exception. It makes an interesting shape all by itself, because any block whose patches have j in their descriptor will have a distinctive-looking diamond component in the center. The four-patch looks like this:

j patch

so the full sixteen-patch looks like this:

j block

where the stippled parts can vary. A look at the list of blocks with component j will confirm that they all have this basic similarity.

I had made a list of the descriptors for each of the the 72 blocks, and from this I extracted a list of the descriptors for interesting component shapes. Then it was only a matter of finding the component descriptors in the block descriptors to know which blocks contained which components; if the two blocks share two different distinctive components, they probably look somewhat similar.

Then I sorted the blocks into groups, where two blocks were in the same group if they shared two distinctive components. The resulting grouping lists, for each block, which other blocks have at least two shapes in common with it. Such blocks do indeed tend to look quite similar.

This strategy was actually the second thing I tried; the first thing didn't work out well. (I forget just what it was, but I think it involved finding polygons in each block that had white inside and black outside, or vice versa.) I was satisfied enough with this second attempt that I considered the project a success and stopped work on it.

The complete final results were:

  1. This tabulation of blocks that are somewhat similar
  2. This tabulation of blocks that are distinctly similar (This is the final product; I consider this a sufficiently definitive listing of “similar blocks”.)
  3. This tabulation of blocks that are extremely similar

And these tabulations of all the blocks with various distinctive components: bd bf bfh bfi cd cdd cdf cf cfi ee eg egh egi fgh fh fi gg ggh ggi gh gi j

It may also be interesting to browse the work directory.


[Other articles in category /misc] permanent link

Fri, 18 Jul 2014

On uninhabited types and inconsistent logics

Earlier this week I gave a talk about the Curry-Howard isomorphism. Talks never go quite the way you expect. The biggest sticking point was my assertion that there is no function with the type a → b. I mentioned this as a throwaway remark on slide 7, assuming that everyone would agree instantly, and then we got totally hung up on it for about twenty minutes.

Part of this was my surprise at discovering that most of the audience (members of the Philly Lambda functional programming group) was not familiar with the Haskell type system. I had assumed that most of the members of a functional programming interest group would be familiar with one of Haskell, ML, or Scala, all of which have the same basic type system. But this was not the case. (Many people are primarily interested in Scheme, for example.)

I think the main problem was that I did not make clear to the audience what Haskell means when it says that a function has type a → b. At the talk, and then later on Reddit people asked

what about a function that takes an integer and returns a string: doesn't it have type a → b?

If you know one of the HM languages, you know that of course it doesn't; it has type Int → String, which is not the same at all. But I wasn't prepared for this confusion and it took me a while to formulate the answer. I think I underestimated the degree to which I have internalized the behavior of Hindley-Milner type systems after twenty years. Next time, I will be better prepared, and will say something like the following:


A function which takes an integer and returns a string does not have the type a → b; it has the type Int → String. You must pass it an integer, and you may only use its return value in a place that makes sense for a string. If f has this type, then 3 + f 4 is a compile-time type error because Haskell knows that f returns a string, and strings do not work with +.

But if f had the type a → b, then 3 + f 4 would be legal, because context requires that f return a number, and the type a → b says that it can return a number, because a number is an instance of the completely general type b. The type a → b, in contrast to Int → String, means that b and a are completely unconstrained.

Say function f had type a → b. Then you would be able to use the expression f x in any context that was expecting any sort of return value; you could write any or all of:

   3 + f x
   head(f x)
   "foo" ++ f x
   True && f x

and they would all type check correctly, regardless of the type of x. In the first line, f x would return a number; in the second line f would return a list; in the third line it would return a string, and in the fourth line it would return a boolean. And in each case f could be able to do what was required regardless of the type of x, so without even looking at x. But how could you possibly write such a function f? You can't; it's impossible.

Contrast this with the identity function id, which has type a → a. This says that id always returns a value whose type is the same as that if its argument. So you can write

 3 + id x

as long as x has the right type for +, and you can write

 head(id x)

as long as x has the right type for head, and so on. But for f to have the type a → b, all those would have to work regardless of the type of the argument to f. And there is no way to write such an f.


Actually I wonder now if part of the problem is that we like to write a → b when what we really mean is the type ∀a.∀b.a → b. Perhaps making the quantifiers explicit would clear things up? I suppose it probably wouldn't have, at least in this case.

The issue is a bit complicated by the fact that the function

      loop :: a -> b
      loop x = loop x

does have the type a → b, and, in a language with exceptions, throw has that type also; or consider Haskell

      foo :: a -> b
      foo x = undefined

Unfortunately, just as I thought I was getting across the explanation of why there can be no function with type a → b, someone brought up exceptions and I had to mutter and look at my shoes. (You can also take the view that these functions have type a → ⊥, but the logical principle ⊥ → b is unexceptionable.)

In fact, experienced practitioners will realize, the instant the type a → b appears, that they have written a function that never returns. Such an example was directly responsible for my own initial interest in functional programming and type systems; I read a 1992 paper (“An anecdote about ML type inference”) by Andrew R. Koenig in which he described writing a merge sort function, whose type was reported (by the SML type inferencer) as [a] -> [b], and the reason was that it had a bug that would cause it to loop forever on any nonempty list. I came back from that conference convinced that I must learn ML, and Higher-Order Perl was a direct (although distant) outcome of that conviction.

Any discussion of the Curry-Howard isomorphism, using Haskell as an example, is somewhat fraught with trouble, because Haskell's type logic is utterly inconsistent. In addition to the examples above, in Haskell one can write

    fix :: (a -> a) -> a
    fix f = let x = fix f 
             in f x

and as a statement of logic, !!(a\to a)\to a!! is patently false. This might be an argument in favor of the Total Functional Programming suggested by D.A. Turner and others.


[Other articles in category /CS] permanent link

Thu, 17 Jul 2014

Guess what this does (solution)

A few weeks ago I asked people to predict, without trying it first, what this would print:

 perl -le 'print(two + two == five ? "true" : "false")'

(If you haven't seen this yet, I recommend that you guess, and then test your guess, before reading the rest of this article.)

People familiar with Perl guess that it will print true; that is what I guessed. The reasoning is as follows: Perl is willing to treat the unquoted strings two and five as strings, as if they had been quoted, and is also happy to use the + and == operators on them, converting the strings to numbers in its usual way. If the strings had looked like "2" and "5" Perl would have treated them as 2 and 5, but as they don't look like decimal numerals, Perl interprets them as zeroes. (Perl wants to issue a warning about this, but the warning is not enabled by default. Since the two and five are treated as zeroes, the result of the == comparison are true, and the string "true" should be selected and printed.

So far this is a little bit odd, but not excessively odd; it's the sort of thing you expect from programming languages, all of which more or less suck. For example, Python's behavior, although different, is about equally peculiar. Although Python does require that the strings two and five be quoted, it is happy to do its own peculiar thing with "two" + "two" == "five", which happens to be false: in Python the + operator is overloaded and has completely different behaviors on strings and numbers, so that while in Perl "2" + "2" is the number 4, in Python is it is the string 22, and "two" + "two" yields the string "twotwo". Had the program above actually printed true, as I expected it would, or even false, I would not have found it remarkable.

However, this is not what the program does do. The explanation of two paragraphs earlier is totally wrong. Instead, the program prints nothing, and the reason is incredibly convoluted and bizarre.

First, you must know that print has an optional first argument. (I have plans for an article about how optional first arguments are almost always a bad move, but contrary to my usual practice I will not insert it here.) In Perl, the print function can be invoked in two ways:

   print HANDLE $a, $b, $c, …;
   print $a, $b, $c, …;

The former prints out the list $a, $b, $c, … to the filehandle HANDLE; the latter uses the default handle, which typically points at the terminal. How does Perl decide which of these forms is being used? Specifically, in the second form, how does it know that $a is one of the items to be printed, rather than a variable containing the filehandle to print to?

The answer to this question is further complicated by the fact that the HANDLE in the first form could be either an unquoted string, which is the name of the handle to print to, or it could be a variable containing a filehandle value. Both of these prints should do the same thing:

  my $handle = \*STDERR;
  print STDERR $a, $b, $c;
  print $handle $a, $b, $c;

Perl's method to decide whether a particular print uses an explicit or the default handle is a somewhat complicated heuristic. The basic rule is that the filehandle, if present, can be distinguished because its trailing comma is omitted. But if the filehandle were allowed to be the result of an arbitrary expression, it might be difficult for the parser to decide where there was a a comma; consider the hypothetical expression:

   print $a += EXPRESSION, $b $c, $d, $e;

Here the intention is that the $a += EXPRESSION, $b expression calculates the filehandle value (which is actually retrieved from $b, the $a += … part being executed only for its side effect) and the remaining $c, $d, $e are the values to be printed. To allow this sort of thing would be way too confusing to both Perl and to the programmer. So there is the further rule that the filehandle expression, if present, must be short, either a simple scalar variable such as $fh, or a bare unquoted string that is in the right format for a filehandle name, such as `HANDLE``. Then the parser need only peek ahead a token or two to see if there is an upcoming comma.

So for example, in

  print STDERR $a, $b, $c;

the print is immediately followed by STDERR, which could be a filehandle name, and STDERR is not followed by a comma, so STDERR is taken to be the name of the output handle. And in

  print $x, $a, $b, $c;

the print is immediately followed by the simple scalar value $x, but this $x is followed by a comma, so is considered one of the things to be printed, and the target of the print is the default output handle.

In

  print STDERR, $a, $b, $c;

Perl has a puzzle: STDERR looks like a filehandle, but it is followed by a comma. This is a compile-time error; Perl complains “No comma allowed after filehandle” and aborts. If you want to print the literal string STDERR, you must quote it, and if you want to print A, B, and C to the standard error handle, you must omit the first comma.

Now we return the the original example.

 perl -le 'print(two + two == five ? "true" : "false")'

Here Perl sees the unquoted string two which could be a filehandle name, and which is not followed by a comma. So it takes the first two to be the output handle name. Then it evaluates the expression

     + two == five ? "true" : "false"

and obtains the value true. (The leading + is a unary plus operator, which is a no-op. The bare two and five are taken to be string constants, which, compared with the numeric == operator, are considered to be numerically zero, eliciting the same warning that I mentioned earlier that I had not enabled. Thus the comparison Perl actually does is is 0 == 0, which is true, and the resulting string is true.)

This value, the string true, is then printed to the filehandle named two. Had we previously opened such a filehandle, say with

open two, ">", "output-file";

then the output would have been sent to the filehandle as usual. Printing to a non-open filehandle elicits an optional warning from Perl, but as I mentioned, I have not enabled warnings, so the print silently fails, yielding a false value.

Had I enabled those optional warnings, we would have seen a plethora of them:

Unquoted string "two" may clash with future reserved word at -e line 1.
Unquoted string "two" may clash with future reserved word at -e line 1.
Unquoted string "five" may clash with future reserved word at -e line 1.
Name "main::two" used only once: possible typo at -e line 1.
Argument "five" isn't numeric in numeric eq (==) at -e line 1.
Argument "two" isn't numeric in numeric eq (==) at -e line 1.
print() on unopened filehandle two at -e line 1.

(The first four are compile-time warnings; the last three are issued at execution time.) The crucial warning is the one at the end, advising us that the output of print was directed to the filehandle two which was never opened for output.

[ Addendum 20140718: I keep thinking of the following remark of Edsger W. Dijkstra:

[This phenomenon] takes one of two different forms: one programmer places a one-line program on the desk of another and … says, "Guess what it does!" From this observation we must conclude that this language as a tool is an open invitation for clever tricks; and while exactly this may be the explanation for some of its appeal, viz., to those who like to show how clever they are, I am sorry, but I must regard this as one of the most damning things that can be said about a programming language.

But my intent is different than what Dijkstra describes. His programmer is proud, but I am disgusted. Incidentally, I believe that Dijkstra was discussing APL here. ]


[Other articles in category /prog/perl] permanent link

Wed, 16 Jul 2014

Guess what this does

Here's a Perl quiz that I confidently predict nobody will get right. Without trying it first, what does the following program print?

 perl -le 'print(two + two == five ? "true" : "false")'

(I will discuss the surprising answer tomorrow.)


[Other articles in category /prog/perl] permanent link