The Universe of Discourse

Fri, 09 Feb 2007


  1. Sentence 2 is false.
  2. Sentence 1 is true.
What to make of this?

Many answers are possible. The point of this note is to refute one particular common answer, which is that the whole thing is just meaningless.

This view is espoused by many people who, it seems, ought to know better. There are two problems with this view.

The first problem is that it involves a theory of meaning that appears to have nothing whatsoever to do with pragmatics. You can certainly say that something is meaningless, but that doesn't make it so. I can claim all I want to that "jqgc ihzu kenwgeihjmbyfvnlufoxvjc sndaye" is a meaningful utterance, but that does not avail me much, since nobody can understand it. And conversely, I can say as loudly and as often as I want to that the utterance "Snow is white" is meaningless, but that doesn't make it so; the utterance still means that snow is white, at least to some people in some contexts.

Similarly, asserting that the sentences are meaningless is all very well, but the evidence is against this assertion. The meaning of the utterance "sentence 2 is false" seems quite plain, and so does the meaning of the utterance "sentence 1 is true". A theory of meaning in which these simple and plain-seeming sentences are actually meaningless would seem to be at odds with the evidence: People do believe they understand them, do ascribe meaning to them, and, for the most part, agree on what the meaning is. Saying that "snow is white" is meaningless, contrary to the fact that many people agree that it means that snow is white, is foolish; saying that the example sentences above are meaningless is similarly foolish.

I have heard people argue that although the sentences are individually meaningful, they are meaningless in conjunction. This position is even more problematic. Let us refer to a person who holds this position as P. Suppose sentence 1 is presented to you in isolation. You think you understand its meaning, and since P agrees that it is meaningful, he presumably would agree that you do. But then, a week later, someone presents you with sentence 2; according to P's theory, sentence 1 now becomes meaningless. It was meaningful on February 1, but not on February 8, even though the speaker and the listener both think it is meaningful and both have the same idea of what it means. But according to P, as midnight of February 8, they are suddenly mistaken.

The second problem with the notion that the sentences are meaningless comes when you ask what makes them meaningless, and how one can distinguish meaningful sentences from sentences like these that are apparently meaningful but (according to the theory) actually meaningless.

The answer is usually something along the lines that sentences that contain self-reference are meaningless. This answer is totally inadequate, as has been demonstrated many times by many people, notably W.V.O. Quine. In the example above, the self-reference objection is refuted simply by observing that neither sentence is self-referent. One might try to construct an argument about reference loops, or something of the sort, but none of this will avail, because of Quine's example: "is false when appended to a quoted version of itself." is false when appended to a quoted version of itself. This is a perfectly well-formed, grammatical sentence (of the form "x is false when appended to a quoted version of itself".) It is not immediately self-referent, and there is no "reference loop"; it merely describes the result of a certain operation. In this way, it is analogous to sentences like this one:

"snow is white" is false when you change "is" to "is not".
Or similarly:
If a sentence is false, then its negation is true.
Nevertheless, Quine's sentence is an antinomy of the same sort as the example sentences at the top of the article.

But all of this is peripheral to the main problem with the argument that sentences that contain self-reference are meaningless. The main problem with this argument is that it cannot be true. The sentence "sentences that contain self-reference are meaningless" is itself a sentence, and therefore refers to itself, and is therefore meaningless under its own theory. If the assertion is true, then the sentence asserting it is meaningless under the assertion itself; the theory deconstructs itself. So anyone espousing this theory has clearly not thought through the consequences. (Graham Priest says that people advancing this theory are subject to a devastating ad hominem attack. He doesn't give it specifically, but many such come to mind.)

In fact, the self-reference-implies-meaninglessness theory obliterates not only itself, but almost all useful statements of logic. Consider for example "The negation of a true sentence is false and the negation of a false sentence is true." This sentence, or a variation of it, is probably found in every logic textbook ever written. Such a sentence refers to itself, and so, in the self-reference-implies-meaninglessness theory, is meaningless. So too with most of the other substantive assertions of our logic textbooks, which are principally composed of such self-referent sentences about properties of sentences; so much for logic.

The problems with ascribing meaninglessness to self-referent sentences run deeper still. If a sentence is meaningless, it cannot be self-referent, because, being meaningless, it cannot refer to anything at all. Is "jqgc ihzu kenwgeihjmbyfvnlufoxvjc sndaye" self-referent? No, because it is meaningless. In order to conclude that it was self-referent, we would have to understand it well enough to ascribe a meaning to it, and this would prove that it was meaningful.

So the position that the example sentences 1 and 2 are "meaningless" has no logical or pragmatic validity at all; it is totally indefensible. It is the philosophical equivalent of putting one's fingers in one's ears and shouting "LA LA LA I CAN'T HEAR YOU!"

There are better positions. Priest's position is that the sentences are both true and false. This would seem to be just as defensible as the position that they are neither true nor false, but in fact the two positions are neither equivalent nor symmetric. For fuller details, see the article on "dialetheism" in The Stanford Encyclopedia of Philosophy (Summer 2004 Edition); for fullest details, see Priest's book In Contradiction.

[Other articles in category /math/logic] permanent link